NIST Researchers Take Counting Single Photons to an Unprecedented Rate

In high-end 21st century communications, information travels in the form of a stream of light pulses typically traveling through fiber optic cables. Each pulse can be as faint as a single photon, the smallest possible unit (quantum) of light. The speed at which such systems can operate depends critically on how fast and how accurately detectors on the receiving end can discriminate and process those photons.

Now scientists at the National institute of Standards and Technology (NIST) have devised a method that can detect individual photons at a rate 10 times faster than the best existing technology, with lower error rates, higher detection efficiency, and less noise.

“The new SPAD design could find practical uses in the applications of quantum communication and quantum computation,” group leader Alan Migdall said. “Both of those offer capabilities not possible with conventional communication and computation. And both of those applications would benefit from faster, lower-noise single photon detectors.”

“This novel design is likely to impact a number of quantum applications. They range from single-photon sensing, where faster count rates and lower noise reduce the time for existing measurements, to the emerging quantum internet, which relies critically on single-photon detection for quantum communication and quantum computation. Both of those can be expected to have a very substantial impact on our society and economy.”

To read the full story, click here.